NDSU NORTH DAKOTA STATE UNIVERSITY

STUDENT FOCUSED • LAND GRANT • RESEARCH UNIVERSITY

Challenges and Opportunities when Managing Soil Sulfur

2024 Indiana CCA Conference

Dr. Brady Goettl

Assistant Professor of Extension Soil Science

Topic to Cover

- S in our environment
- The role of S in crop growth
- Forms of S and S cycle
- Sources of S in agriculture
- Testing soil S levels
- Practical S-fertility management

Ground water

Source: D. Franzen, NDSU

Sulfur in the Atmosphere

- Naturally released from wetlands, waterbodies, volcanic activity
- Product of coal and fossil fuel combustion

$SO_2 + O_2 + H_2O \rightarrow H_2SO_4$

NDSU NORTH DAKOTA STATE UNIVERSITY

Photo source: https://19january2017snapshot.epa.gov/history/epa-historyclean-air-act-amendments-1990_.html

US Anthropogenic SO₂ Emissions

NDSU NORTH DAKOTA STATE UNIVERSITY

Data Source: https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data

Three-Year Average of Total Sulfur Deposition

Source: CASTNET/CMAQ/NADP USEPA, 2021

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: https://www3.epa.gov/airmarkets/progress/reports_2020/acid_deposition_figures.html

"In 1860, sulfur was recognized as an essential nutrient... referred to as the 'fourth major nutrient' following nitrogen, phosphorous, and potassium"

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: Sulfur: A Missing Link between Soils, Crops, and Nutrition, 2008

The Role of Sulfur in Plants

- Component of amino acids—"the building blocks of protein"
- Component of *nitrate reductase*
 - Converts NO₃ to organic N within the plant
 - Deficiency of S interferes with N metabolism

Sulfur Deficiency

- Light green coloring of the whole plant
- Interveinal chlorosis
- Best diagnosed with tissue testing

Is Sulfur Demand Increasing?

- Reduced SO₂ emissions
- Lower S concentration in synthetic fertilizers compared to organic sources
- Increased crop removal

Sulfur in the Soil

Inorganic

- Sulfate (SO₄-²)
- Elemental sulfur (S)
- Hydrogen sulfide (H₂S)
- Salt/Mineral
 - Gypsum (CaSO₄)
 - Epsomite (MgSO₄)
 - Pyrite (FeS₂)

NDSU NORTH DAKOTA STATE UNIVERSITY Organic

- Organic sulfates
- Carbon-bonded sulfur

Most soils S is in organic forms, so S is highly correlated to organic matter

Figure 9-6. The sulfur cycle.

Mineralization-Immobilization

Oxidation-Reduction

Sources of Sulfur

- Organic (crop residue, manure)
 - Variable depending on crop and animal species
 - Approx. 60% of manure S is available the first year
- Fertilizer
 - Solubility varies
 - May require chemical transformations before it is plant-available

Sources of Sulfur

Table 9-12. Sulfur fertilizers.

aterial	Chemical formula	Fertilizer analysis N-P ₂ 0 ₅ -K ₂ 0	Sulfur content
ry soluble		_%_	_%_
Ammonium sulfate	(NH ₄) ₂ SO ₄	21-0-0	24
Potassium sulfate	K ₂ SO ₄	0-0-50	18
Potassium-magnesium sulfate	K ₂ SO ₄ •2MgSO ₄	0-0-22	23
Ammonium thiosulfate ^a	$(NH_4)_2S_2O_3 + H_2O$	12-0-0	26
Magnesium sulfate (Epsom salts)	MgSO ₄ •7H ₂ O	0-0-0	14
Ordinary superphosphate	$Ca(H_2PO_4)_2 + CaSO_4$	0-20-0	14
ightly soluble			
Calcium sulfate (gypsum)	CaSO ₄ •2H ₂ O	0-0-0	17
soluble			
Elemental sulfur	S	0-0-0	88–98

Similar effectiveness whether surface applied or incorporated

^aAmmonium thiosulfate is a 60% aqueous solution. Source: Management of Wisconsin Soils, 2009

Elemental Sulfur

- Very insoluble
- Requires oxidation before it is plant available
- Oxidation rate depends on:
 - Particle size
 - Soil mixing/incorporation
 - Soil moisture and temperature
 - Microbial activity
- Sulfur deficient fields should include SO₄-S application for immediate availability NDSU NORTH DAKOTA NDSU STATE UNIVERSITY

Sulfur Across the Landscape

- Gypsum deposits in the North Central Region
- Groundwater in ND, SD, and Western MN is enriched with gypsum and other sulfate salts
- Groundwater moves sulfate to the surface
 NDSU NORTH DAKOTA STATE UNIVERSITY

Sulfur Response in ND

 Severe S deficiency became evident in early 1990s with the introduction of canola

		Canola Yield (lb/ac)		
S rate (Ib/ac)	S source	Hilltop	Slope	Footslope
0		30	240	1460
20	AMS	1650	1670	1720
40	AMS	1800	1860	2170
40	Elemental	620	1060	1630

6,000% Yield Increase!

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: Deibert et al., 1996

Developing a Soil Test

Correlation

NORTH DAKOTA

- Relationship between plant uptake of a nutrient and the amount of nutrient extracted by a soil analysis
- Test should quantify the amount and form of nutrients taken up by the plant

Developing a Soil Test

- Calibration
 - Establish meaning between soil test measurements and crop response across a wide array of fields and fertility levels

Sulfur Soil Tests

- No fully satisfactory SO₄-2 tests exist
 - S is constantly undergoing transformations
 - Tests do not reflect sources of potentially available S
 - High mobility of SO₄-2
 - Precipitated gypsum in arid/semiarid environments

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: Recommended Chemical Soil Test Procedures for the North Central Region, 2011

Sulfur Soil Test Calibration (or Lack of)

- Minnesota, 2008-09
- S increased corn yield at two of four locations
- Greatest response to S occurred in soils with <2% OM
- Response was not related to SO₄-S soil test

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: https://doi.org/10.2134/agronj2012.0299

Sulfur Soil Test Calibration (or Lack of)

- Iowa 2007-2009
- S fertilizer increased yield at 28 of 47 sites
- 0-6 in. depth SO₄-S soil tests were not related to yield response
- Response to S was greater in low OM soils

Sulfur Tissue Test

- Indiana, 2017-2022
- Corn yield was increased by sidedress S in 15 of 40 trials
- Pre-sidedress S concentration <0.18% may benefit from S application

Sites with positive response to sulfur No sidedress S Sidedress S 1.10 1.05 Per 1.00 Relative 0.90 0.85 0.10 0.12 0.14 0.16 0.18 0.20 0.22 Earleaf %S Non-responsive sites No sidedress S Sidedress S 1.10 1.05 Pie 1.00 Relative 0.90 0.85 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 Earleaf %S

NDSU NORTH DAKOTA STATE UNIVERSITY

Source: https://ag.purdue.edu/department/agry/agry-extension/_docs/soil-fertility/corn-response-to-sulfur-in-in.pdf

Practical Sulfur Management

- Do all fields/crops require a sulfur application?
 Likely not
- How do we know when to apply S when the tests are not good predictors?

– Consider aggravating factors of S deficiency

Practical Sulfur Management

- Pay particular attention to crops with high S demand
 - Alfalfa, canola/forage brassica, cole crops, high biomass crops
- Conditions favorable to S deficiency:
 - High precipitation, low soil OM, coarse soil textures, high water table, saturated conditions

4Rs of Sulfur Management

- Right rate
 - Recommendations range from 10-50 lb S/ac
- Right source
 - SO₄-S is plant available, elemental S must be oxidized
- Right time
 - Spring applied SO₄-S has a lower risk of leaching loss
- Right placement

- Broadcast, incorporated, or banded are equally effective NDSU NORTH DAKOTA NDSU STATE UNIVERSITY

Take-Home Points

- S deficiency is becoming more common
- Diagnostic tests are not reliable for determining crop demand/response to S
- Soil and field conditions can be help indicate the potential need for fertilizer S
- Sulfate fertilizers should be used to ensure plant availability

Brady Goettl, PhD, CCA Extension Soil Science Specialist brady.goettl@ndsu.edu School of Natural Resource Sciences NORTH DAKOTA STATE UNIVERSITY

We find it just as scientific to be practical as it is practical to be scientific. Hugh Hammond Bennett

